Acoustic Levitation and Quantum-Like Behavior of Styrofoam Balls

Angelea Arnett, Sophia Heinrich, Vlad Prakash, Raul Puente, Herman Batelaan
Department of Physics and Astronomy, University of Nebraska–Lincoln

ABSTRACT
We are investigating acoustic waves (28,000 Hz) as they guide Styrofoam balls in combination with schlieren imaging. The first arrangement is a standing acoustic wave that levitates the Styrofoam balls. We used the acoustic radiation force to predict the spatial pattern of the balls. The second arrangement is a double-slit acoustic system with Styrofoam balls launched evenly into the slits. The purpose is to see if the acoustic double-slit system can be a systematic visual analogue to a double-slit electron diffraction system using De Broglie-Bohm’s Theory. The role of the electron is played by a Styrofoam ball and the role of the guiding wave is played by the acoustic wave.

ACOUSTIC RADIATION FORCE

Acoustic Pressure Function
\[p(x, t) = p_0 \cos(kx) \sin(\omega t) \]

Acoustic Potential Energy
\[U = \frac{p_0^2}{2} \left(\frac{\sin^2(kx)}{kx} \left(1 - \frac{\pi f}{\pi f}\right) + \frac{\sin^2(kx)}{2kx/\pi f}\right) \]

Figure 3: Based on the acoustic potential energy, we can predict that the Styrofoam balls tend to move toward the nodes (o) of the pressure wave.

LEVITATION ANALYSIS

<table>
<thead>
<tr>
<th>Position of Balls</th>
<th>Percent Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball</td>
<td>Image 1</td>
</tr>
<tr>
<td>(4)</td>
<td>1.67 %</td>
</tr>
<tr>
<td>(3)</td>
<td>1.29 %</td>
</tr>
<tr>
<td>(2)</td>
<td>0.00 %</td>
</tr>
<tr>
<td>(1)</td>
<td>6.90 %</td>
</tr>
</tbody>
</table>

Based on these results, the acoustic radiation force can be used to map the positions of the Styrofoam balls as they levitate in the acoustic standing wave. It must be noted, that the dB reading calculated [144 dB] based on the required force to levitate the balls was much too high for our constructed system [132 dB max].

SCHLIEREN IMAGING

Pinhole Flashlight
Beam Splitter Cube
Razor Blade
Video Camera

Spherical Mirror

Figure 1: Schlieren imaging system setup, which is used to see the varying pressure of air (air flow).

ACOUSTIC LEVITATION

\(\lambda = \frac{2.14}{4} \text{ cm} \)
\(\lambda = 1.53 \text{ cm} \)
\(\lambda = 0.92 \text{ cm} \)
\(\lambda = 0.31 \text{ cm} \)

Figure 4: A geometric representation shows the expected vertical positions relative to the plate. Reference: Acoustic Levitation and the Acoustic Radiation Force (David P. Jackson, Ming-Hua Chang).

DOUBLE-SLIT DIFFRACTION

Figure 6: Shows an incident acoustic plane wave diffracting as it passes through a double-slit. Interference of the acoustic waves causes an intensity pattern that is shown on the right side.

LEVITATING BALLS

Figure 5: Data collected from 3 images (O) compared to predicted values from the acoustic radiation force (X).

PRELIMINARY FINDINGS

Figure 7: The Styrofoam balls were launched into the acoustic diffraction system one at a time with the speaker off (A) and speaker on (B). Based on the resulting patterns, we hypothesize that it is possible for the acoustic system to be a visual analogue to double-slit electron diffraction.

CONCLUSIONS

We found that the acoustic radiation force can be used to map the positions of the Styrofoam particles as they levitate in the acoustic standing wave system with minimal error. Although we must further investigate the discrepancy in the decibel reading to ensure that there are no other factors involved in the model.

Future Work: Create a simulation that shows the Bohmian trajectories of a double-slit electron diffraction system and compare this to the experimental trajectories of the Styrofoam balls in the acoustic system. If these two systems were to match, the visual analogue system could be used as an educational tool to teach about quantum mechanics using the De Broglie-Bohm theory.

SCAN FOR helpful references & more fun videos!